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Abstract. We argue that a comprehensive model of graph comprehension must 
include spatial cognition. We propose that current models of graph comprehen-
sion have not needed to incorporate spatial processes, because most of the 
task/graph combinations used in the psychology laboratory are very simple and 
can be addressed using perceptual processes. However, data from our own re-
search in complex domains that use complex graphs shows extensive use of 
spatial processing. We propose an extension to current models of graph com-
prehension in which spatial processing occurs a) when information is not ex-
plicitly represented in the graph and b) when simple perceptual processes are 
inadequate to extract that implicit information. We apply this model extension 
to some previously published research on graph comprehension from different 
labs, and find that it is able to account for the results.  

1   Introduction  

Until recently, models of graph comprehension have mostly focused on simple graphs 
and tasks, for which information is explicitly represented in the graph. Examples of 
this type of graph/task combination include extracting trends from bar graphs, reading 
off values from bar and line graphs, comparing values in bar graphs, and the like (e.g, 
(Cleveland, 1985). Recently, however, researchers have begun to question the extent 
to which these simple, context-lean graphs and tasks represent the true nature of graph 
use beyond the psychology laboratory. In reality, graphs may be used to make predic-
tions, and thus require information that is not explicitly represented (DeSanctis & Jar-
venpaa, 1989) and graphs may be used as problem-solving tools (Cheng et al., 2001; 
Scaife & Rogers, 1996; Tabachneck-Schijf et al., 1997; Trafton et al., 2000; Trafton 
& Trickett, 2001). Researchers have thus been attempting to understand more com-
plex graph/task interactions, as well as the use of more complex graphs themselves. 
These newer models have begun to account for such factors as the iterative nature of 
graph interpretation (Carpenter & Shah, 1998; Peebles & Cheng, 2003), the familiar-
ity of the graph (Peebles & Cheng, 2003), the role of graph and domain knowledge 
(Freedman & Shah, 2002), and the importance of expertise (Roth & Bowen, 2003; 
Tabachneck-Schijf et al., 1997).  

In their recent review of the graph comprehension literature, Shah, Freedman, and 
Vekiri draw a distinction between perceptual and conceptual processes (Shah et al., 
2005). In their interpretation, perceptual processes are “bottom-up encoding 
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mechanisms,” which focus on the visual features of the display, whereas conceptual 
processes equate to “top-down encoding processes,” which influence interpretation. 
They propose that perceptual processes account for performance on “simple, fact-
retrieval tasks,” but they further argue that “If visual features do not automatically 
evoke a relationship, either because the relationships are not visually integrated in a 
graph or because the graph viewer does not have the prior knowledge required to 
make an interpretation, information must be retrieved by complex inferential 
processes.”  

Although several models agree that these “complex inferential processes” are an 
essential part of the graph comprehension process under some circumstances, they 
remain largely unspecified. Indeed, in taking into account both perceptual and con-
ceptual processes, Shah et al. identify five factors that play a role in predicting per-
formance on graph comprehension: display characteristics, data complexity, the 
viewer’s task, the viewer’s prior domain knowledge, and the viewer’s knowledge 
about graphs. What current models lack is a means to specify precisely how these fac-
tors will influence the type of complex inferential processes that will be engaged.  

We investigated what happens in complex, problem-solving domains when scien-
tists are unable to extract the information they need from the visualization they are 
using (Trafton & Trickett, 2001). Based on an in-depth analysis of several hours of 
verbal protocols, we found not only that it was extremely common for the scientists 
to confront situations where they were unable to directly extract the information they 
needed, but also that in these cases, they used spatial transformations more 
frequently than any other strategy to generate this information. We concluded that 
models of graph comprehension should be expanded to include spatial processing, 
particularly in complex domains for which complex visualizations are required.  

Our most recent research has focused on complex graphs in another complex do-
main (meteorology). Common tasks in this domain certainly include fact retrieval 
(e.g., temperature, wind-speed, etc., at a specific location), in which information is 
explicitly represented and little specialized domain knowledge is required to extract it. 
However, equally commonly, forecasters use graphs to draw inferences (e.g., finding 
the pressure at location C when it is given for locations A and B), for which informa-
tion is not explicitly represented and some domain knowledge is required. They must 
also make complex weather predictions, for which information is not explicitly repre-
sented and a great deal of domain knowledge is needed. Our approach has been to ob-
serve and record experts and journeymen using weather graphs as part of their regular 
work, and to interview them about their strategies. Our results have been consistent: 
the verbal protocols show that in this domain, at least, people use a great deal of spa-
tial processing to extract and use information from data visualizations (Trafton et al., 
2000; Trafton & Trickett, 2001). Further evidence of spatial processing is found in 
meteorologists’ gestures when they talk about how they performed the task (Trafton 
et al., in press). Additionally, in keeping with the important role of domain 
knowledge in graph comprehension (Freedman & Shah, 2002; Roth & Bowen, 2003; 
Tabachneck-Schijf et al., 1997), experts use far more spatial processing than 
journeymen (Trafton et al., in press). This general result—that spatial processing is 
prevalent in complex graph comprehension—has been replicated in studies of fMRI 
research, in addition to the original work in astronomy and computational fluid 
dynamics. All these domains share some important characteristics with the 
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meteorology domain (in terms of the complexity of the visualizations, the task, and 
the domain) (Trafton & Trickett, 2001).  

Based on these data, we have become convinced that spatial processing is an im-
portant component of a comprehensive model of graph comprehension, and specifi-
cally, that it plays a crucial role in guiding the “complex inferential processes”  
discussed above that are involved when information cannot be directly extracted from 
the graph. Yet, curiously, spatial processing is not explicitly included in any of the 
current models of graph comprehension. This is something of a puzzle, because these 
models are highly successful in accounting for graph comprehension behavior in 
many graphs and tasks, including some in which information must be inferred rather 
than extracted directly. Indeed, some models (Lohse, 1993; Peebles & Cheng, 2003; 
Pinker, 1990) are explicitly and exclusively propositional; others are simply non-
committal (Freedman & Shah, 2002; Roth & Bowen, 2003). The goal of this paper is 
to investigate why this should be so—that is, why current theories of graph compre-
hension, so successful in analyzing many of the behaviors associated with graph in-
terpretation, do not account for our data. We propose a refinement of current theories 
that enables them to predict when spatial processing will occur, and how it will guide 
graph comprehension in these complex situations.  

First, we provide a brief definition of spatial processing. Though this definition is a 
simplification, it is nonetheless useful because it provides operational means by which 
we can identify spatial processing in our verbal protocol data and in our analyses of 
the requirements of graph tasks in the graph comprehension literature. Second, we 
briefly describe a generic model of graph comprehension, based on recent analyses by 
Shah, Freedman, and Vekiri (2005). We analyze two situations, one in which needed 
information can be directly extracted from the graph, and a second in which it must be 
inferred using perceptual processes. The purpose of this description is to establish a 
terminology that applies to graph comprehension tasks specifically addressed by this 
model, which we can then use to describe the tasks and actions involved in the more 
complex meteorological task. Third, we summarize the results of several studies in 
complex domains that show spatial processing is used in these tasks. We also analyze 
several specific instances of forecasting tasks, to show when and how spatial process-
ing is used. We show that when the desired information was not explicitly represented 
in the graph and when perceptual processing could not generate the type of informa-
tion needed, spatial processing was used. Finally, we apply our model to an analysis 
of a graph comprehension tasks from the graph comprehension literature, and show 
how it provides a viable interpretation of performance on these tasks.  

2   Spatial Processes  

Baddeley was instrumental in establishing the distinction between verbal and spatial 
processing (Baddeley, 1999) and in further distinguishing between spatial and visual 
processing (Baddeley & Liebeman, 1980). Spatial processing involves “the internal-
ized reflection and reconstruction of space in thought” (Hart & Moore, 1973).  

Operationally, we define spatial processing in two ways. Spatial processing in-
volves maintaining spatial information (e.g., the relative locations of objects) in work-
ing memory (so-called spatial working memory). Instances of spatial processing can 
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therefore be identified by means of task analysis (Gray et al., 1993). Spatial process-
ing can also be identified via the use of mental spatial transformations, which occur 
when a spatial object is transformed from one mental state or location into another 
mental state or location. Mental spatial transformations—which we refer to simply as 
spatial transformations—occur in a mental representation that is an analog of physical 
space and are frequently part of a problem-solving process. There are many types of 
spatial transformations: creating a mental image, modifying that mental image by 
adding or deleting features, mental rotation (Shepard & Metzler, 1971), mentally 
moving an object, animating a static image (Bogacz & Trafton, 2005; Hegarty, 1992), 
making comparisons between different views (Kosslyn et al., 1999; Trafton et al., 
2005), and any other mental operation which transforms a spatial object from one 
state or location into another.  

Note that we distinguish between spatial processing (i.e., the use of spatial trans-
formations) and purely perceptual processing, in which graph users are able to make 
direct or explicit comparisons from the graph itself, without the need to hold spatial 
information in working memory. Thus, comparing two adjacent bar heights on a 
graph requires only perceptual processing, whereas comparing a bar height on a dis-
played graph with one on a remembered graph requires spatial processing, because 
the remembered bar height would have to be projected onto the displayed graph for 
the comparison to occur (assuming that specific values had not been remembered).  

Most graph comprehension research is not designed to specifically identify the 
type of processing—verbal or spatial—used. However, while people are doing graph-
related tasks, it is possible to elicit verbal protocols, that “dump” the contents of 
working memory during problem-solving (Ericsson & Simon, 1993). These verbal 
protocols can then be coded, and instances of spatial processing can be identified. We 
have conducted several studies in which meteorologists (and scientists) give verbal 
protocols while making their forecasts, and we have coded the spatial transformations 
in those protocols. Our IRR for this coding has been consistently good.  

3   A Generic Model of Graph Comprehension  

Several general models of graph comprehension are based on one proposed by Pinker 
(Pinker, 1990), in which the visual features of the display, gestalt processes, and the 
graph schema all interact to allow the user to extract the conceptual message of the 
graph. To summarize this model: 1) the user has a goal (which is provided) to extract 
a specific piece of information 2) the user looks at the graph, and the graph schema 
and gestalt processes are activated 3) the salient features of the graph are encoded, 
based on gestalt principles 4) the user now knows which cognitive/interpretive strate-
gies to use, because the graph is familiar (graph knowledge)—that is, the user knows 
where to look at what steps to take 5) the user extracts necessary goal-directed visual 
chunks 6) the user may compare two or more visual chunks and 7) the user extracts 
the relevant information to satisfy the goal (answer the question).  

Figure 1 shows a simple bar graph, depicting information from the US Census Bu-
reau (www.census.gov). Suppose the goal is to extract the amount of lifetime earnings 
for woman with a high school diploma. This information is explicitly represented in 
the graph, and can be directly extracted when the user executes steps 1 through 5, and 
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step 7. Suppose, however, the goal is to extract how much more women earn if they 
complete a bachelor’s degree. In this case, the information is not explicitly repre-
sented; however, it can be easily extracted by repeating steps 1 through 5 for the 
bachelor’s degree bar, and calculating the difference. Other information that is not 
explicitly represented can also be extracted in a straightforward manner—for exam-
ple, the trend of earnings as education increases can be extracted by using the percep-
tual process of noticing that each successive bar is a bit taller than the bar to its left 
(i.e., by comparing visual chunks). Similarly, the answer to the question of who earns 
the most can be extracted by locating the tallest bar (again, comparing the bar heights, 
or visual chunks). None of these questions, which are typical of questions posed for 
this type of graph, requires the use of spatial processes; all can be answered by using 
the perceptual processes built in to the generic model.  

 

Fig. 1. Simple bar graph  

Building on this model, Shah and Carpenter have shown that the processes in-
volved are iterative, rather than serial (Carpenter & Shah, 1998), and Freedman and 
Shah have further adapted the model to account for the role of domain knowledge, 
which may influence the last stage, in accordance with the user’s expectations 
(Freedman & Shah, 2002). Nonetheless, these basic perceptual processes have been 
sufficient to account for many tasks in the graph comprehension literature, such as 
fact-retrieval from line or bar graphs, trends for line and bar graphs, making propor-
tion judgments from pie charts, making comparison judgments, determining the slope 
of a regression line, and so on. Variability in performance on these tasks is likely due 
to other factors, such as graph or domain knowledge (Freedman & Shah, 2002).  

In this generic model, although graphs depend on spatial arrays, the processes by 
which information is extracted are largely perceptual (whether the information is 
represented explicitly or implicitly). Graphs depict relationships by means of the 
strategic arrangement of spatial elements, and those relationships can be easily 
extracted because spatial attributes are automatically encoded relationally, e.g., a 
higher line is encoded as meaning a greater value (Pinker, 1990). What makes some 
graphs better than others for particular tasks is precisely this characteristic of 
graphs—e.g., trend information is more easily extracted from line graphs than bar 
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graphs (Tversky, 1995) because a line with an increasing slope is encoded as going 
from less to more. The trend can thus be interpreted by means of virtually effortless 
perceptual processing.  

4   Tasks in Complex Domains  

In this section, we examine how well the generic model outlined above accounts for 
performance in the meteorological and scientific domains. The simplest type of task 
in meteorology is straightforward fact retrieval. Figure 2 shows a typical meteorologi-
cal graph. Note that this graph is significantly more complex than the bar graph in 
Figure 1: it shows four variables (wind speed, wind direction, temperature, and sea 
level pressure) in addition to latitude and longitude lines overlaid onto a map of the 
Southeastern U.S. Despite the graph complexity, however, in such cases, when the 
given goal is to extract a specific piece of information, the generic model is quite ade-
quate. For example, if a forecaster wanted to know the current temperature at Pitts-
burgh, he would take the same steps as those outlined above: first, he would look at 
the weather graph, activating the graph schema, then he would find Pittsburgh and en-
code the color, thereby extracting the required visual chunk; the graph schema would 
guide him to translate the color into a temperature value, by looking at the legend, and 
he would “read off” the appropriate value from the legend. The forecaster might make 
several iterations between looking at Pittsburgh and the legend (Trafton et al., 2002),, 
but the basic mechanisms from the generic model can easily account for performance 
on this task. The model also supports some tasks in which information is not directly 
represented, such as the comparison “Which is hotter, Pittsburgh or Washington?” As 
in the comparison task in the bar graph, the forecaster could answer this question by 
using perceptual processes, locating both Pittsburgh and Washington and their associ-
ated colors, and either looking up the values on the legend or (a more likely expert 
strategy) comparing the colors to see which represents the hotter temperature.  

 

Fig. 2. Meteorological graph (note that the original graph is in color)  
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In many forecasting tasks, however, information cannot be directly extracted from 
the graph, and in these cases, it may not be possible to extract the information by per-
ceptual processes, such as directly comparing visual chunks. Trafton, Marshall, 
Mintz, and Trickett (Trafton et al., 2002) conducted an eyetracking study in which 
forecasters were asked to perform a number of routine forecasting tasks. The tasks 
were designed to have certain characteristics: asking for quantitative information, 
where the answers were explicitly represented in the graph; asking for quantitative in-
formation that was imprecisely represented (i.e., the values were represented by a 
symbology that the user must know in order to extract the needed information); and 
asking for quantitative information that was entirely implicit in the graph (e.g., what is 
the pressure at location C, when it was given for locations A and B, so that values 
must be inferred).  

In another study involving scientists rather than forecasters, Trafton, Trickett, and 
Mintz (2005) investigated the use of mental imagery in scientific visualization. Two 
astronomers and a physicist were observed using complex visualizations to analyze 
data. Trafton et al. compared the number of spatial transformations in the verbal pro-
tocols with the number of physical transformations they performed on the visualiza-
tions (i.e., creating a new visualization or adjusting a current one). There were signifi-
cantly more spatial transformations than physical transformations, suggesting that the 
scientists frequently used spatial processing in preference to the computer’s visualiza-
tion capabilities. More interestingly, Trafton et al. found that comparisons were ex-
tensively used to tie the internal and external visualizations together. They divided 
these comparisons into two types: comparing two external visualizations and compar-
ing an external and an internal visualization. They also coded the type of comparison 
made: comparing features (such as color or size) or aligning (i.e., making an estima-
tion of “fit” between the two images). They found that the type of comparison was re-
lated to the type of visualization being compared. When two external visualizations 
were compared, the scientists most frequently compared features of the visualization; 
however, when an internal and an external visualization were compared, the scientists 
most frequently made alignments. In terms of our model, when the information was 
explicitly represented (in the external visualizations), the scientists used a perceptual 
strategy of comparing visible features; when the information was not explicitly repre-
sented, they used a spatial strategy of aligning one visualization with another, in order 
to estimate the overall “fit” between the two.  

In addition to these studies, further data from our study of forecasters shows a large 
number of situations in which data must be inferred, e.g. resolving discrepancies be-
tween models or between a representation of certain phenomena and the forecaster’s 
conflicting belief about the phenomena, integrating large amounts of disparate 
information into a comprehensive mental model, comparing visual chunks that are no 
longer on the visible display, but must be recalled in memory and mentally juxta-
posed, as well as projecting the changes in the visualization that will likely occur over 
time, given current conditions. We analyze detailed examples of some of these situa-
tions below, in order to show where the information came from and how it was gener-
ated. We consistently find that when forecasters cannot directly extract the informa-
tion from the display, they do one of two things: either they recall it, and given the 
nature of the domain, much of this recalled information is spatial, or they generate it 
by means of spatial transformations, a form of spatial processing.  
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Table 1. Resolving a discrepancy between two weather models  

Utterance
Information
Explicitly
Available?

Action

You also have a 12 max
14

Yes Extract information

winds are not supporting
that

Yes Note discrepancy

The next chart has it mov-
ing down further to the
south

No Recall from spatial memory
(previous visualization, no
longer on screen)

there is a low coming off
the coast that is propa-
gating around

No Spatial transformation (ac-
companied by hand gesture
tracing location of imagined
low)

so I would move it fur-
ther to the south

No Spatial transformation

and that just supports
what I said about ours,
OK

N/A Resolve discrepancy

 

Table 1 shows an instance of a forecaster trying to resolve a discrepancy between 
two visualizations. Her goal was to determine whether or not to maintain a high-seas 
warning, and the chart on display showed the projected sea heights in different loca-
tions of a particular model for the period of interest. She begins by reading off the 
projected sea height in the location she is interested in, “12 max 14” (i.e., high enough 
to be of concern to her). However, information about wind speed conflicts with this 
information. She then recalls another visualization that showed the high seas area in 
transition further to the south (at this stage, she is using her memory of relative loca-
tion, i.e., spatial processing). Her next utterance is a spatial transformation, in which 
she mentally creates and moves a low pressure system (it is not represented on the 
current visualization, but is recalled from memory and projected onto the current 
visualization). This is followed by another spatial transformation, in which she men-
tally moves the area of high seas further to the south. Implicitly, she performs a men-
tal comparison of these transformed mental representations, and finally indicates that 
in this new location, the high seas makes sense and the discrepancy is resolved. It is 
important to note that, just as in the use of more simple graphs, there is an interaction 
between the demands of the task and the type of visualization. In the current case, 
however, this interaction is complex and requires several different types of process-
ing: information must be extracted directly from the current visualization, both spatial 
and non-spatial information must be recalled from previously accessed visualizations, 
and spatial information must be both superimposed and manipulated on the current 
visualization.  
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Table 2. Discrepancy between weather model and forecaster’s mental model  

Utterance
Information
Explicitly
Available?

Action

I can’t buy an 82 out of
the weather bureau at
all…

N/A Note discrepancy

and having a hard time
understanding why
they’re coming up with
what they got.

N/A Reiterate discrepancy (no
easy resolution)

They have um Brunswick
a max temperature of 78
for Friday,

Yes Extract information

we push a front through No Spatial transformation
and we go to 82 degrees No Non-spatial projection
That’s just no way you
would think anything
like that would hap-
pen….

No Spatial transformation
(mental comparison)

I’m not buying that N/A Reiterates disbelief
So again what I’m gonna
do

N/A Conclusion

I’m gonna more or less
stay with what I had yes-
terday,

N/A Conclusion

I’m going 77 N/A Conclusion  

Table 2 illustrates a similar case of discrepancy resolution, only in this instance the 
discrepancy is between the National Weather Service prediction and the forecaster’s 
own mental model. The forecaster begins by doubting the NWS temperature predic-
tion and puzzles over how it was constructed. He then attempts to reconstruct the 
process, recalling the prediction for the day prior to the disputed forecast, and per-
forms a spatial transformation on that model, mentally moving a front through the 
relevant area (the front is not represented on the current visualization). He updates the 
mental representation after the front has hypothetically moved through, and projects 
the disputed 82 degrees on that update. He performs another spatial transformation by 
mentally comparing the two relevant chunks—the updated mental representation and 
the representation containing the 82 degrees, and finds them still discrepant. As a re-
sult, he cannot believe the NWS forecast is valid, and resolves the discrepancy by 
sticking with his own mental model. As in the previous example, spatial transforma-
tions are a crucial part of how he uses the visualization to resolve the problem.  

Similarly, Table 3 shows an instance of a forecaster needing to compare visual 
chunks that are not visible on any current display. In this situation, the forecaster is at-
tempting to update a paper chart, by integrating information from all the previous 
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visualizations (from disparate models) she has viewed. She first notes a discrepancy 
between one of these models and the others, by performing a mental comparison of 
the two representations (a spatial transformation). Her second utterance indicates that 
one of the remembered models did display the lows that are absent from the Canadian 
model. In each of the next three utterances, she performs some form of mental com-
parison between her memory of the Canadian model and her memory of the ENSAP 
model. In the end, she determines a placement for the low on the third representation, 
a paper chart that she is attempting to update.  

Table 3. Compare visual chunks not on the visible display  

Utterance
Information
Explicitly
Available?

Action

Also, one thing I’m not-
ing is that the Canadian
model is having a prob-
lem picking up the two
lows

No Spatial transformation:
comparison (2 mental rep-
resentations)

that are circulating around
this cut-off low off of the
coast of Greenland

No Recall from memory

They do have something
there

No Spatial transformation:
Comparison (alignment)

But they’re not putting a
central pressure on it, as
ENSAP is

No Spatial transformation:
Comparison (alignment)

And it…they’re defi-
nitely there

No Spatial transformation
(projection)

So I’ll put an X where I
think that low should be

N/A Resolution

 

From these examples, it appears that spatial transformations serve a particular pur-
pose in this domain, namely, they provide a means whereby the forecasters can gen-
erate needed information that is not explicitly represented in the visualization. This 
information is constructed by performing spatial transformations on the information 
that is explicitly represented, and developing new mental representations based on 
those (mentally) transformed visualizations. These new mental representations can be 
further manipulated or used as the basis for comparisons.  

We thus propose that current models of graph comprehension do not include spa-
tial processing because for the tasks and graphs used in most studies of graph com-
prehension, either the information can be directly extracted from the display, or if not, 
it can be inferred using direct perceptual processing of the available visual chunks. 
We propose that models of graph comprehension should account for these conditions, 
in that when the information can neither be extracted directly nor inferred from per-
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ceptual processes, spatial processing will be used. We now test this aspect of this 
model by applying it to a graph task in the graph comprehension literature.  

5   Tasks in the Graph Comprehension Literature  

In this section, we turn to a re-analysis of a previously published graph comprehen-
sion study, in order to test our model of spatial processing. We have chosen to focus 
our analyses on one of the tasks investigated by Simkin and Hastie (Simkin & Hastie, 
1987) because their stated aim was to establish elementary codes that can account for 
the processes that operate “when people decode the information represented in a 
graph,” that is, that can apply across different graph/task combinations and account 
for differences in performance across different graphical representations.  

Simkin and Hastie used three different graph types—simple bar, divided bar, and 
pie charts—and three tasks—discrimination, comparison judgment, and proportion 
judgment. The graphs were similar to those in Figure 3. We focus only on the com-
parison judgment task, because according to Simkin and Hastie’s task analysis, all 
their different elementary codes are involved in this task across the different graph 
types. For the comparison task, participants were asked to assess the percentage the 
smaller visual chunk was of the larger. This information is not explicitly represented 
in the graph; the question of interest to us is whether it can be extracted by purely per-
ceptual means, or whether spatial processing must be used.  

 

Fig. 3. Left to right: pie, bar, and divided bar graphs, of the type used by Simkin and Hastie  

Simkin and Hastie developed four elementary processes by which people extract 
information from graphs: anchoring, scanning, projection, and superimposition. An-
choring involves selecting a portion of the graph as a baseline, or anchor, against 
which other judgments can be made (e.g., 50% of a bar). Scanning involves moving 
the eye from the anchor to the edge of the distance to be judged (e.g., from the mid-
point of a shaded area to its edge). Projection involves mentally drawing a line from a 
point in one image to a point in anther. Superimposition involves moving elements of 
the graph to a new position, to create overlap with other elements in the graph.  

In terms of our model, anchoring, scanning, and projection can be considered per-
ceptual processes, at least in these very simple tasks. Although projection involves 
mentally drawing a line, this extension most likely does not make much, if any, de-
mand on spatial working memory, because of the direct juxtaposition of the start and 
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end points. Superimposition, however, does involve spatial processing, because a spa-
tial element, in which size and/or angle are crucial, must be mentally moved from one 
spatial location to another. Superimposition is thus a spatial transformation.  

Simkin and Hastie’s task analysis showed that for the simple bar graph, projection, 
anchoring, and scanning are required, whereas for the divided bar and pie graphs, su-
perimposition, anchoring, and scanning are needed. In this case, our model predicts 
that the task would take longer and be less accurate for divided bar and pie graphs 
than for simple bar graphs, because it involves at least one spatial transformation, and 
spatial processing is more effortful than purely perceptual processing. This is indeed 
what Simkin and Hastie found: reaction time was significantly shorter for simple bar 
than divided bar and pie graphs, though these did not differ significantly from each 
other, and accuracy for simple bar graphs was greater than for divided bar or pie 
graphs, though again, these two were not significantly different from each other.  

This analysis suggests some validation of our model, in that we are able to match 
Simkin and Hastie’s independently established elementary processes to our 
distinction between perceptual and spatial processing, and show that graph/task 
combinations that involve spatial processing were found to be more difficult than one 
that did not. The analysis also shows that there are simple graph tasks that can be—
and have been—performed in the psychology laboratory for which perceptual 
processing alone cannot account for performance on the task. Although Simkin and 
Hastie did not analyze elementary graphing processes according to their perceptual or 
spatial nature, it is clear that at least one of their processes—superimposition—
involves spatial cognition. Since Simkin and Hastie’s goal in establishing these four 
elementary codes was to “develop a vocabulary of elementary mental processes that 
can be combined to build information-processing models of performance in common 
graph-perception tasks,” it would be a simple matter to perform task analyses on other 
tasks to determine which of the elementary codes (perceptual or spatial) is involved.  

6   General Discussion  

We have proposed that a comprehensive model of graph comprehension needs to 
include spatial processing as an important component of the graph comprehension 
process, and we have proposed a model that predicts when spatial processing is re-
quired. In accordance with prior models of graph comprehension, we have argued that 
when information can be extracted directly from the graph, the task can be accom-
plished by perceptual processing alone. However, we have proposed an extension to 
those models, such that when information is not explicitly represented and the infor-
mation cannot be extracted by perceptual processes, spatial processing will likely be 
used. Whether perceptual processing is sufficient in such cases depends on the inter-
action of the task and graph. We have suggested that in more complex domains, in 
which the graphs and tasks are more complex, it is more likely that spatial processing 
will be required. However, we have also shown that spatial processing can be needed 
for simple tasks performed on simple graphs, depending on the graph type.  

We believe that the reason spatial processing has not been part of graph compre-
hension models is that the focus on simple tasks and graphs has made it unnecessary, 
since in general, simple perceptual processes are sufficient to account for perform-
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ance. Differences in performance on different graph types have been attributed to a 
better or worse match between the task and the graph. In addition, the strength of 
graphs as a form of representation is that they can make implicit things explicit (at 
least, good graphs do), so graphs are designed and selected so that it is possible to 
make direct comparisons between visual chunks. However, as tasks, domains, and 
visualizations become more complex, this transparency may not always be possible or 
even desirable (forecasters, for example, don’t want simpler graphs, they want many 
variables represented). As graph comprehension research moves out of the psychol-
ogy laboratory into the “real world” of practice, it will be more important for graph 
comprehension models to include spatial processing.  

Although it may be rare for simple graph/task combinations to require spatial proc-
essing, such cases do exist. In addition to Simkin and Hastie’s comparison judgment 
task, consider the case of a simple two-by-two psychology experiment, represented by 
a simple bar graph as in Figure 4. In this instance, the interaction is explicit, but in or-
der to determine whether there is a main effect, the spatial strategy of mentally aver-
aging the relevant bar heights is most likely used. Other problem-solving uses of 
graphs (e.g., (Cheng et al., 2001; Scaife & Rogers, 1996; Tabachneck-Schijf et al., 
1997) are likely to involve spatial processing as well.  

 

Fig. 4. Simple bar graph: Depending on the task, spatial processing may be used  

In general, many spatial cognition tasks can be solved by a non-spatial strategy, for 
example, mathematically. If this strategy is chosen, there is obviously no spatial cog-
nition at work. However, we believe that people will prefer spatial strategies in graph 
comprehension tasks, in part because the graph is a spatial array, and using spatial 
cognition does not require “translation” of the spatial code. Our model makes testable 
predictions as to when spatial processing will be used, and the type of strategy used in 
these instances where multiple strategies are possible is, in fact, an empirical 
question.  

Our model extension embraces more recent refinements of the generic model dis-
cussed earlier. For example, eyetracking data from our studies (Trafton et al., 2002) 
confirms the iterative nature of perceptual processing (Carpenter & Shah, 1998). Fur-
thermore, expertise appears to be an important factor in spatial processing of graphi-
cal information (c.f.,(Freedman & Shah, 2002)—both domain and graph knowledge. 
Without these two important types of knowledge, it is unlikely that a graph user 
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would be able to generate the necessary spatial transformations to extract the needed 
information.  

Without incorporating spatial processing, we believe current models of graph com-
prehension will be incomplete. Including spatial processing in our models will help us 
to understand why some representations might be better than others at a cognitive 
level, by shedding light on processes that underlie different graph/task interactions. It 
can help identify situations in which spatial processing is unavoidable and can help us 
make predictions about performance using these graphs. In some situations, it can 
help us design better graphs, by developing creative ways to reduce the number of 
spatial transformations required (for example, by facilitating direct comparisons that 
can be performed perceptually). In sum, we propose that including spatial processing 
is an important step in building a comprehensive model of graph comprehension.  
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